Organic Compounds

Carbon

Has four valence electrons

Can bond with many elements

- Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen
- Can bond to other carbon atoms
 - Gives carbon the ability to form chains that are almost unlimited in length.

Carbon

- Has the ability to form millions of different large and complex structures.
- No other element even comes close to matching carbon's versatility.
- Organic chemistry study of all compounds that contain bonds between carbon atoms.

Macromolecules

- Macromolecules "Giant molecules" made from smaller molecules
 - Formed by a process known as <u>polymerization</u>, in which large compounds are built by joining smaller ones together.
 - The smaller units, or <u>monomers</u>, join together to form <u>polymers</u>.

Organic Compounds

- Four groups of organic compounds found in living things are:
 - 1. Carbohydrates
 - 2. Lipids
 - 3. Nucleic Acids
 - 4. Proteins

Carbohydrates

- <u>Carbohydrates</u> Compounds made up of carbon, hydrogen, and oxygen atoms
 - Usually in a ratio of 1 : 2 : 1.

Uses of Carbohydrates

Living things use carbohydrates as:

- 1. Main source of <u>energy</u> (starches and sugars)
- 2. Plants and some animals also use carbohydrates for <u>structural purposes</u>

Uses of Carbohydrates

- Animals
 - Store excess sugar in the form of <u>glycogen</u>
- Plants
 - Store excess sugar in the form of starch
 - Use tough, flexible cellulose fibers to give them their strength and rigidity

Classification of Sugars

Monosaccharides - Single sugar molecules

- Examples: Glucose, Galactose, Fructose
- Disaccharides Double sugar molecules
 - Examples:
 - Glucose + Fructose = Sucrose
 - Glucose + Galactose = Lactose
 - Glucose + Glucose = Maltose

Polysaccharides – More than two sugar molecules

- Examples: Starch, Cellulose, Chitin, Glycogen
- Dehydration Synthesis- how you join these monosaccharides together.

Lipids

- Common categories of lipids are
 - 1. Fats
 - 2. Oils
 - 3. Waxes
- Functions:
 - 1. Can be used to store energy

- Can serve as chemical messengers (steroids only)
- Generally not soluble in water

Structure of Lipids

Made mostly from carbon and hydrogen atoms

Glycerol molecule + 3 fatty acids

Saturated and Unsaturated Lipids

- Saturated If each carbon atom in a lipid's fatty acid chains is joined to another carbon atom by a single bond.
 - "saturated" is used because the fatty acids contain the maximum possible number of hydrogen atoms
- <u>Unsaturated</u> If there is at least one carbon-carbon double bond in a fatty acid.
 - Examples Corn oil, sesame oil, canola oil, and peanut oil

Saturated and Unsaturated Fatty Acids

Oleic acid, a monounsaturated fatty acid. Note that the double bond is *cis*; this is the common natural configuration,

Stearic acid, a saturated fatty acid

Linoleic acid, a polyunsaturated fatty acid. Both double bonds are *cis*.

Nucleic Acids

- Nucleic acids Macromolecules containing hydrogen, oxygen, nitrogen, carbon, and phosphorus.
- Made up of repeating units called <u>nucleotides</u>
 Nitrogenous
 - Each nucleotide contains:
 - 1. 5-Carbon Sugar
 - 2. Phosphate Group
 - 3. Nitrogenous Base

Nucleic Acids

Function:

- Store genetic information D
- Transmit genetic information
- Two Kinds of Nucleic Acids:
 - Ribonucleic acid (RNA)
 Contains the sugar ribose
 - Deoxyribonucleic acid (DNA)
 - Contains the sugar deoxyribose

Protein

- Proteins Macromolecules that contain nitrogen as well as carbon, hydrogen, and oxygen.
- Made up of chains of <u>amino acids</u> folded into complex structures.
 - Amino Acids Compounds with an amino group (–NH2) on one end and a carboxyl group (–COOH) on the other end.

Amino Acids

- There are more than <u>20</u> different amino acids.
- Any amino acid may be joined to any other amino acid by bonding an amino group to a carboxyl group.

Amino Acids

- There are more than 20 different amino acids.
- What distinguishes one amino acid from another is the R-group section of the molecule.

Functions of Proteins

- Each protein has a specific role.
 - Some proteins control the rate of reactions and regulate cell processes.
 - 2. Some are used to form bones and muscles.
 - 3. Others transport substances into or out of cells or help to fight disease.

Chemical Reactions

- Chemical Reaction A process that changes one set of chemicals into another set of chemicals.
 - Always involve the breaking of bonds in reactants and the formation of new bonds in products.

Chemical Reactions

- Reactants The elements or compounds that enter into a chemical reaction.
- Products The elements or compounds produced by a chemical reaction.

Energy in Reactions

- Because chemical reactions involve breaking and forming bonds, they involve changes in energy.
- Will the chemical reaction occur?
 - Chemical reactions that release energy (in the form of heat, light, and sound) often occur spontaneously.
 - Chemical reactions that absorb energy will not occur without a source of energy.

Organisms and Energy

- Plants
 - Get their energy by trapping and storing the energy from sunlight in energy-rich compounds.
- Animals
 - Get their energy when they consume plants or other animals.
 - Release the energy needed to grow tall, to breathe, or to think through the chemical reactions that occur when humans metabolize, or break down, digested food.

Activation Energy

- Activation Energy The energy that is needed to get a reaction started.
 - The peak of each graph represents the energy needed for the reaction to go forward.
 - The difference between this required energy and the energy of the reactants is the activation energy.

- Some chemical reactions that make life possible are too slow or have activation energies that are too high to make them practical for living tissue.
- Catalyst A substance that speeds up the rate of a chemical reaction by lowering a reaction's activation energy.

- Enzymes Proteins that act as biological catalysts.
 - Speed up chemical reactions that take place in cells.
 - Very specific, generally catalyzing only one chemical reaction.
 - Part of an enzyme's name is usually derived from the reaction it catalyzes.

Effect of Enzymes

How Do Enzymes Work?

- Substrates The reactants of enzyme-catalyzed reactions.
- The Enzyme-Substrate Complex
 - Enzymes provide a site where reactants can be brought together to react.
 - This site reduces the energy needed for reaction.
 - Each protein has a specific, complex shape.
 - <u>Active Site</u> The site on the enzyme where substrates bind.
 - The active site and the substrates have complementary shapes, which is often compared to a lock and key.

Regulation of Enzyme Activity

- Enzymes can be affected by any variable that influences a chemical reaction such as:
 - 1. pH
 - 2. Temperature
 - 3. Cells contain proteins that help to turn key enzymes "on" or "off"

